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within the radial quantization of the ABJM theory [1], the theory proposed to describe N

M2-branes in the R3 × C
4/Zk background. After studying the classical moduli space of

these configurations, we explicitly construct a set of gauge invariant operators involving

’t Hooft monopole operators corresponding to these states. We show there is a one-to-

one correspondence between the two sets carrying R-charge J and that they are labeled

by Young tableaux of J boxes with a maximum of N rows. Restricting the full path

integral to this half-BPS sector of the theory, we show the latter is described in terms of

N fermions in a 2d harmonic potential in the sector of vanishing angular momentum. The

same classification, though in the N → ∞ limit, arise from the plane-wave (BMN) Matrix

theory as well as the 11 dimensional LLM bubbling geometries [2], providing supportive

evidence for the ABJM theory and/or the Matrix model.
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1 Introduction

The N = 8 3d SCFT is the theory describing the low energy limit of multiple M2-branes

in R1,10. Moreover, it is expected to be the conformal field theory dual to M-theory on the

AdS4 × S7 background. As such the recent proposals for a non-trivial interacting N = 8

3d field theory [3], the BLG theory, has prompted an extensive study of these models. The

original BLG theory, with totally antisymmetric three-bracket structure [3] and a three-

algebra with positive definite metric seems to be well suited for describing dynamics of two

M2-branes [4]. The way to construct a theory describing a generic number of M2-branes

was paved by the realization that the BLG theory may also be written as a SU(2)×SU(2) 3d

(supersymmetric) Chern-Simons gauge theory with the SU(2)’s to have levels k and −k [5].

The generalization to N M2-branes, for which the natural guess would be an SU(N)×

SU(N) supersymmetric Chern-Simons gauge theory, now known as the ABJM theory,

was proposed in [1] shortly after the BLG theory. It was shown, through a construction

involving N D3-brane intersecting an NS5-brane and a (1, k) 5-brane of type IIB theory

and uplifting the system to M-theory and taking the low-energy limit, that the theory

describing N M2-branes probing a (supersymmetric) C4/Zk orbifold is a supersymmetric

U(N)k × U(N)−k Chern-Simons theory [1]. This theory, which is closely resembling the

BLG theory for the N = 2, has N = 6 supersymmetry, it is a conformal field theory and it

is invariant under the Osp(4∗|6) superalgebra [6]. For k = 1, 2 the ABJM theory is expected

to become an N = 8 3d theory. This theory has passed many tests and many extensions of

the model (to less supersymmetric Chern-Simons gauge theories) have also been studied.

In this note we study and classify all the half-BPS configurations of the ABJM theory

which are invariant under the SU(2|3) superalgebra and compare it with the known results
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from the plane-wave matrix theory [7] and the half-BPS deformations of the eleven di-

mensional plane-wave background [2]. We show that there is a one-to-one correspondence

between these three. The half-BPS states of an N = 8 3d theory are labeled by the only

quantum number they carry J , which is the R-charge corresponding to a U(1) ∈ SO(8)

R-symmetry group of the theory. Being BPS the scaling dimension of these operators

∆ = J/2 is protected by supersymmetry.

To study the half-BPS states of the ABJM theory we need to consider monopole (or

’t Hooft line) operators. In the radial quantization of the ABJM theory (i.e. the ABJM

theory on R × S2) these are operators which involve a non-zero magnetic flux on the S2.

Due to the presence of the ’t Hooft monopole operator, these half-BPS operators may seem

to be non-local. However, since we are dealing with a Chern-Simons theory their non-local

part is a gauge artifact [1, 8].1

As we will show the half-BPS states with R-charge J are constructed from monopole

operators the total magnetic flux of which over the S2 is J . Here we will give a detailed

construction of half-BPS operators and their classification by all possibilities available for

monopole operators of flux J . As we will discuss such monopole operators are classified by

the partition of J into N non-negative integers (N is the rank of the gauge group in the cor-

responding ABJM theory). Therefore all the half-BPS states of the ABJM theory, for any

k, are labeled by Young tableaux of J number of boxes and maximum N number of rows.

It is well established that (e.g. see [2, 10]) the half-BPS sector of the N = 4 SU(N)

SYM is equivalent to a system of N 2d fermions in the Lowest Landau Level. In this work

we show that a similar 2d fermionic picture is also true for the half-BPS sector of the ABJM

theory (for any k). In this case, in contrast to the N = 4 SYM case, the fermions are bound

to move in a 2d harmonic oscillator potential in the sector with zero angular momentum.

The ABJM theory at level k = 1, 2 is a theory dual to M-theory on AdS4 × S7 (or

its Penrose or plane-wave limit, the 11d plane-wave) and as such one expects to have a

similar classification for half-BPS states of the latter theory. Although an independent

formulation for M-theory on AdS4 × S7 is still lacking, for this purpose one can use the

plane-wave matrix theory as the discrete light cone quantization (DLCQ) of M-theory on

the 11d plane-wave background.2 The half-BPS states of the latter have been classified

and shown to be all labeled by the J dimensional representation of SU(2) [12]. These

representations are labeled by Young tableaux of J boxes. In contrast to the ABJM case,

there is no restriction on the number of rows of the Young diagrams in this case.

As the third description for these half-BPS states, we consider the class of 11d super-

gravity solutions which are half-BPS deformations of 11d maximally supersymmetric plane-

wave. These geometries are the 11d LLM (bubbling) geometries [2]. As discussed in [13]

(see also [14, 15]) these geometries are labeled by a set of integers specifying the number of

spherical M2 or M5-branes in the background. We show how this information can naturally

be encoded in a Young tableau, in perfect agreement with the previous two descriptions.

1For recent work on the construction of gauge invariant operators describing warped M2-branes see [9].
2The 11d plane-wave and the AdS4 × S7 are related by taking the Penrose limit. The process of taking

the Penrose limit closely resembles that of going to an infinite momentum frame and/or the DLCQ [11].

The plane-wave matrix model can also be considered as the DLCQ of M-theory on the AdS4 × S7.
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This paper is organized as follows. In section 2, after reviewing the ABJM theory we

focus on its half-BPS sector and construct all the half-BPS operators in the sector with R-

charge J . In section 3, we show that the half-BPS sector of the ABJM theory is described

by a 2d fermion system. In section 4, we review the results of the plane-wave matrix theory

and its half-BPS states. Moreover, we review the 11d LLM bubbling geometries and show

that the half-BPS deformations of the 11d plane-wave can be described by a Young tableau,

similarly to the one used for half-BPS states of the ABJM theory. In this way we give a

natural interpretation for the monopole operators of the ABJM theory in terms of spherical

M2 or M5 -brane giant gravitons. The last section is devoted to discussions.

2 Half-BPS sector in the ABJM theory

The ABJM theory is a supersymmetric 3d Chern-Simons theory with four complex scalars

ZA and four two component 3d fermions ψA in the 4 of the SO(6) R-symmetry group. These

matter fields transform in the bi-fundamental (N, N̄) representation of u(N)×u(N).Besides

these propagating fields, there are a couple of non-dynamical Chern-Simons gauge fields

A(1) and A(2) in the N × N representations of each of the u(N) algebras. They have a

Chern-Simons action with opposite integer levels for the two gauge groups, k and −k.

These theories are dual to AdS4 × S7/Zk. For the particular values of k = 1, 2, the

R-symmetry group is enhanced to SO(8) and the number of supersymmetries to 32.

We are interested in studying the half-BPS sector of these theories preserving SO(3)×

SU(4), for k = 1, 2 or SO(3)×SU(3) for k 6= 1, 2. These are states saturating the BPS bound

∆ = J/2, where J corresponds to their U(1) R-charge and ∆ to their conformal dimension.

Since R-charge acts as rotation on the complex scalar fields, the preserved symmetries

guarantee that such states will only involve a single scalar field Z = Z1, carrying one unit

of R-charge and having conformal dimension 1/2.

It is convenient to use radial quantization by defining these theories on R × S2 so

that there exists an operator-state correspondence. In addition, the eigenvalues of the

Hamiltonian correspond to the scaling dimensions of the operators. The classical action will

involve an extra mass coupling of the scalar fields to the curvature of the 2-sphere [1, 17, 18].

The bosonic truncation of the total action to this single complex scalar field Z coupled to

the two gauge fields is

S = −
1

8π

∫

dtd2ΩTr

[

DαZD
αZ̄ +DαZ̄D

αZ −
1

4
(Z̄Z + ZZ̄)

]

− SCS , (2.1)

where SCS stands for the Chern-Simons piece

SCS =
k

8π

∫

dtd2Ω Tr
2

∑

i=1

(−1)i+1

(

A(i) ∧ dA(i) +
2

3
A(i) ∧A(i) ∧A(i)

)

, (2.2)

and the covariant derivatives are defined according to the field representation,

DαZ = ∂αZ + iA(1)
α Z − iZA(2)

α ,

DαZ̄ = ∂αZ̄ + iA(2)
α Z̄ − iZ̄A(1)

α . (2.3)

We have chosen the radius of the S2 such that the mass is (formally) equal to one half.

– 3 –
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2.1 Classical moduli space of half-BPS configurations

In the following, we will solve the classical equations of motion derived from (2.1) while pre-

serving the appropriate bosonic symmetries. We will then check that these configurations

preserve half of the supersymmetries.3

Classical half-BPS configurations must be SU(2) invariant. As such, the matrix Z

must be covariantly constant on the 2-sphere, i.e. DθZ = DφZ = 0. Non-vanishing R-

charge requires a non-trivial time dependence on Z to describe the rotation in the {Z, Z̄}

subspace. Since (2.1) contains a Chern-Simons term, gauge fields cannot be turned off

consistently. Their equations of motion are

ǫµναF (1)
µν = 2πi

k Jα =
2πi

k

(

Z̄DαZ − (DαZ̄)Z
)

,

ǫµναF (2)
µν = −2πi

k J̄α = −
2πi

k

(

ZDαZ̄ − (DαZ)Z̄
)

. (2.4)

Notice that DθZ = DφZ = 0 is on-shell equivalent to the absence of covariantly constant

vector fields F
(i)
tµ on the 2-sphere. Since Jα is a conserved current, we learn that the

N ×N matrices

F (i) ≡

∫

S2

F
(i)
θφ (2.5)

are constants of motion, that is DtF
(i) = 0. Note that on a 2-sphere we have an in-

variant two-form, its volume-form, and hence Fθφ ∝ sin θ is not ruled out by the SO(3)

invariance condition.4

Let us next consider the equations of motion for the Z field which in the absence of

the gauge fields take the form

−∂2
t Z + ∇2Z −

1

4
Z = 0.

One may use the u(N) × u(N)gauge transformations to diagonalize Z. Let us work in a

gauge where

Z = diag(z1, z2, · · · , zN ), zi = e−iωitwi . (2.6)

we learn that the spectrum of Z is

ωl =

√

l(l + 1) +
1

4
= l +

1

2
.

Hence for the half-BPS sector, where all the fields should be constant on the S2 (i.e. l = 0)

ωi are all equal to 1
2 in units of the radius of the S2.

Working in the gauge A(1) = A(2), conditions DθZ = DφZ = 0 are manifestly satisfied

for Z’s in the half-BPS sector. This gauge is preserved by a diagonal u(N), which can

3Our analysis is close in nature to the one presented in section III of [18]. Here, however, we directly

focus on the subset of degrees of freedom relevant for the description of half-BPS states with the appropriate

bosonic symmetries.
4This should be contrasted with the half-BPS sector of N = 4 SYM on R × S3, in the sense that there

are no invariant two-forms on the S3.
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be used to set A
(i)
0 = 0 (this justifies the validity of the scalar field equation used above).

Thus D0Z = Ż. For our diagonal configurations, we have

F (1) =
πi

k

(

Z̄Ż − ˙̄ZZ
)

F (2) = −
πi

k

(

Z ˙̄Z − ŻZ̄
)

,

(2.7)

from which we conclude

F (1) =F (2) =
2π

k
diag(|z1|

2, |z2|
2, · · · , |zN |2)≡2π diag(n1, n2, · · · , nN ), ni∈Z+ , (2.8)

where quantization of the gauge field flux over the 2-sphere was used in the last step,

implying that

|zi|
2 = kni . (2.9)

That is, |zi|
2 is an (integer) multiple of the level k. From the above equation we learn that

the quantized fluxes of the gauge fields ni are a collection of non-negative integers. Acting

with the permutation group SN , we can arrange them such that n1 ≥ n2 ≥ · · · ≥ nN .

We would like to stress that, being the eigenvalues of the matrix F , ni are all gauge

invariant quantities.

For the diagonal configurations specified by the set of fluxes {ni} the energy of the

system is given by

H =
1

16π

∫

S2

d2Ω Tr
(

Z̄Z + ZZ̄
)

=
k

2

N
∑

i=1

ni . (2.10)

Note that the energy is also related to the total flux of the gauge fields over the two sphere,

H = k
8π

(

TrF (1) + TrF (2)
)

. One may also work out the angular momentum associated to

the u(1) rotation of the Z

J =
1

4π

∫

d2Ω Tr(Z̄D0Z −D0ZZ) =

N
∑

i=1

|zi|
2 = k

N
∑

i=1

ni . (2.11)

It is readily seen that H = J/2, which is the BPS condition.

Supersymmetry. So far we have argued that being in the half-BPS sector demands

turning on an SO(3) invariant mode of only one of the four complex scalars ZA. Here we

show that this is indeed enough for being half-BPS. To see this consider the supersymmetry

variations for the fields in ABJM theories defined on R × S2 written in [17]. The amount

of supersymmetry preserved by any bosonic configuration is obtained by solving

δψBd =γµDµZ
A
d ǫAB+fabc̄

d Z
C
a ZA

b Z̄Cc̄ ǫAB+fabc̄
d Z

C
a ZD

b Z̄Bc̄ ǫCD−
1

3
ZA

d γ
µ∇µǫAB =0 .

In the above a, b, · · · are denoting the u(N) × u(N) bi-fundamental indices, fabc̄
d are the

structure constants built from the u(N) symmetric traceless and totally anti-symmetric

three tensors [19] and ǫAB are fermions on R × S2 as well as being in the 6 of SU(4) R-

symmetry (denoted by A,B indices). In particular note that ∇µǫ = γµ ǫ/2, and γ0ǫ = iǫ

– 5 –
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and therefore, there are 12 independent ǫ’s.5 Since there is only one scalar Z1 = Z turned

on the above reduces to

δψBd =

(

γµDµZd −
1

2
Zd

)

ǫ1B = 0 . (2.12)

Any half-BPS configuration requires the above to vanish for any ǫ1B (the other components

of ǫ do not appear in (2.12) they can be chosen freely). This is only true if DθZ = DφZ = 0

and D0Z = −(i/2)Z. We note, however, that just checking the δψ = 0 condition is not

enough and one should make sure that all the equations of motion are also satisfied. For

the Z field this is trivial, but not for the gauge fields (note that in our Chern-Simons

theory the gauge fields are non-propagating). In particular, on top of (2.12), (2.4) should

also be added, yielding to F
(i)
tθ = F

(i)
tφ = 0 and F

(1)
θφ = π

k sin θZ̄Z, F (2) = π
k sin θZZ̄. These

equations may be solved in the A
(1)
µ = A

(2)
µ gauge and in the gauge where Z is diagonal;

as was done in the previous section.

After discussing the supersymmetry condition let us also discuss the classification half-

BPS states by the relevant superalgebras. The N = 8 3d theory is invariant under the 3d

superconformal Osp(4∗|8) superalgebra, which has 32 real supercharges and is the super-

isometry of AdS4 × S7 geometry. This algebra has a number of sub-algebras with 16

supercharges which has been listed in [16]. The ABJM theory for generic k, on the other

hand is an N = 6 superconformal theory and its superalgebra is Osp(4∗|6), which has 24

real supercharges.

The half-BPS sector we have been studying, which involves only one of the four complex

scalars of the theory, is invariant under SU(2|4) for the N = 8 case (related to k = 1, 2

ABJM theories) and SU(2|3) for the N = 6 (generic k ABJM theory). That is, they

fall into singlet representations of the above-mentioned half-BPS superalgebras. In either

cases, the SU(2) invariance is enforced in our construction by demanding invariance under

the SO(3) isometries of the S2 in the radial quantization. The SU(4) or SU(3) invariance

is made manifest in exciting only one of the four complex scalars. The generator of the

U(1) in these superalgebras is related to ∆− J/2 in the CFT side and hence its invariance

is enforced by imposing the BPS condition.

2.2 Construction of half-BPS states

In the previous section, we discussed the classical moduli space of half-BPS configurations

consistent with the appropriate bosonic symmetries. We will now construct gauge invariant

operators carrying the right charges corresponding to these classical configurations. By the

operator-state correspondence, these will describe the half-BPS states in ABJM theories.

Such operators can only involve a single scalar matrix Z. Since this transforms in the

bi-fundamental representation of the U(N) ×U(N) gauge group, the trace over its matrix

indices will not generate a gauge invariant operator. As already mentioned in [1], we can

construct local gauge invariant operators using monopole or ’t Hooft operators [8]. It is

5Note that besides the supersymmetry transformations generated by the ǫAB above, there are 12 extra

fermionic transformations which all together form the Osp(4∗|6) superalgebra [6]. Thus, half BPS states

should preserve all ǫAB defined above. This is what we will prove below.

– 6 –
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this part of the operator that will carry the information about the magnetic fluxes turned

on in the classical configurations.

Before moving to explicit construction of the relevant monopole operators to our Chern-

Simons theory, we note that turning on fluxes of the gauge fields, ni will generically break

the u(N) × u(N) gauge symmetry to u(1)N × u(1)N . Let us denote the generators of this

remaining Abelian subgroup by T 1
i and T 2

i where i = 1, 2, · · · , N . Under u(1)N × u(1)N

transformations, u(1)N which is generated by T 1
i +T 2

i , Z remains invariant and under those

generated by ti ≡ T 1
i − T 2

i , Z rotates by a phase. In the notations of ABJM U(1)b is the

part of the gauge symmetry which is generated by t =
∑N

i=1 ti. The fluxes {ni} are then

charges of ti. We define the “total flux” J/k as

J = k

N
∑

i=1

ni . (2.13)

J/k, is hence the flux corresponding to the U(1)b [1].

To illustrate the idea behind the construction of these operators, let us consider the

U(1) × U(1) theory first. Working in the gauge A(1) = A(2) = A with A = n
2 (1 − cos θ)dφ,

the only left gauge transformations are the time dependent ones acting on A0 as

A1
0 → A1

0 + ∂0λ, A2
0 → A2

0 + ∂0λ .

The monopole operator is defined as the imaginary exponential of the integral of the Chern-

Simons form over the 2-sphere and integrating time from t → −∞ to a value t. Since the

gauge field carries n units of flux, such operator is characterized by (k, n, t):6

Wmonopole(n; t) ≡ e−i k
4π

R t
−∞

dt A0

R

d2ΩFθφ = eikn
R t
−∞

dtA0 . (2.14)

From now on, let us focus on the N = 8 theory (k = 1). Assuming that all gauge

transformations vanish as t → −∞, i.e. λ(t → −∞) = 0, we conclude the monopole oper-

ator transforms as Wmonopole → e−inλWmonopole under a gauge transformation. Recalling

that under the same gauge transformation Zn → e+inλZn, we conclude that W (n; t)Zn(t)

is a gauge invariant operator. This operator has R-charge n and conformal dimension n/2.

Since W (n; t)Zn(t) involves an integral over the local gauge field A0, it is a non-local oper-

ator. However, as discussed in [1] and as it can be seen from our arguments above, this is

not the case. This is because the non-local part of this operator can be absorbed by (finite)

gauge transformations. Notice also that this is the only gauge invariant operator carrying

these charges one can build for this gauge group involving a single bi-fundamental matter

field. This agrees with the classical moduli space analysis above. Equivalently, there is a

one-to-one correspondence between the half-BPS operator and the magnetic flux n that

characterizes the charges carried by the operator.

Let us extend this construction to the U(N) × U(N) theory, where we already know

the magnetic fluxes are specified by N integers, and not just one as in the Abelian case.

6Although we are performing the computations in a gauge in which the background gauge field has

only non-zero Aφ component, from (2.14) it is seen that our discussions go through for a generic gauge

transformation λ and not just for those which are only time dependent.
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In the general case, turning on the fluxes {ni} generically breaks the gauge group to

U(1)N ×U(1)N . The individual eigenvalues zi rotate under the U(1) rotation generated by

ti. This suggests generalizing the above construction for each pair of unbroken U(1)×U(1)

gauge group factors.

Proceeding as if we have N copies of the U(1) × U(1) theory and with a given set of

fluxes {ni} the most general operator which is invariant under U(1)N ×U(1)N and involves

the monopole operators is hence7

O{ni} =
N
∏

i=1

W (ni; t)z
ni
i (t) . (2.15)

The above operator, which is written in a specific gauge, is in fact also invariant

under the full U(N) × U(N) gauge symmetry. To see this, let us recall that a Wilson line

(monopole) operator in a U(N) gauge theory:

O(ti, tf ) = P

(

ei
R tf

ti
dt A0

)

, (2.16)

transform under U(N) gauge transformations as

O −→ U(ti)OU(tf )−1 . (2.17)

Thus, if we take U(−∞) = 11, the corresponding operator

O(t) = P
(

ei
R t
−∞

dt A0

)

(2.18)

is in the anti-fundamental of the U(N) gauge group.

Let us now consider our U(N) × U(N) gauge theory. For each gauge group we can

construct a ’t Hooft operator which is in the (anti)fundamental of either of the gauge

groups. Explicitly consider

O1 = P

(

e

“

i
R t
−∞

dtA
(1)
0

”)

, (2.19)

O2 = P

(

e

“

−i
R t
−∞

dtA
(2)
0

”)

. (2.20)

Clearly, O1 is in the anti-fundamental of the first U(N) group whereas O2 is in the funda-

mental of the second U(N). Since Z transforms in the bi-fundamental (N, N̄ ), we conclude

that the operator O1ZO2 is gauge invariant.

The previous construction has no relation to the individual fluxes {ni}. To introduce

the dependence on these quantum numbers, let us return to the matrix F (a) a = 1, 2.

One may use the U(N) large gauge (global) transformations to bring both matrices to a

diagonal form:

F (a)|i〉(a) = 2πn
(a)
i |i〉(a) (2.21)

7Note that due to the SO(3) invariance in the half-BPS sector one may simply reduce the theory on the

S2 and remain with a 0 + 1 dimensional quantum mechanical system. The half-BPS operators are hence

operators in this theory and have only time dependence.
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We can now build projector operators:

P
(a)
i = |i〉(a)〈i|(a) . (2.22)

By construction, each of these projectors transforms in the adjoint under a gauge trans-

formation of the ath U(N) gauge group. Thus, the set of states

Qij = O1P
1
i ZP

2
j O2 , (2.23)

is gauge invariant.

To sum up, the product of the traces of these operators raised to any integer would

be a half-BPS gauge invariant operator. However, due to the equations of motion for the

gauge fields F (1) = F (2). Thus, both basis are equal, |i〉(1) = |i〉(2), and we can drop the

dependence on this index. Similarly Zij =< i|(1)Z|j >(2) is also diagonal in this same basis.

Denoting by Q = O1O2 the operator transforming in the (N̄,N) representation of

U(N) × U(N) (using both ’t Hooft operators defined above), we can write our gauge

invariant operators as

Zi ≡ QPiZ . (2.24)

We can finally write the operators O{ni} in terms of the Zi as

O{ni} =

N
∏

i=1

Zni
i . (2.25)

Note that {ni} are also gauge invariant quantities.

The set of operators O{ni} satisfying
∑N

i=1 ni = J correspond to half-BPS operators

with R-charge J . This explicit construction establishes a one-to-one correspondence be-

tween this class of half-BPS operators and the set of Young tableaux with J boxes and

at most N rows: O{ni} corresponds to a Young tableau which has ni number of boxes in

the ith row. The fact that such Young tableau do completely characterize the space of

vacua of the plane wave Matrix Model strongly suggests that the operators constructed

here are complete.8

For k 6= 1 one can check that all the above arguments go through and one needs to

simply replace ni in (2.25) by kni. Thus, in this case, all half-BPS operators are still

completely specified by the set of {ni}.

3 2d fermion picture

The half-BPS sector of N = 4 SYM is described by a matrix model whose degrees of

freedom correspond to free fermions in a one dimensional harmonic potential or equivalently

2d fermions in the lowest Landau Level. It is natural to wonder whether our d = 3 SCFTs

have a similar fermionic description for their half-BPS sectors.

8The correspondence to the Matrix Model is known to be exact in the limit N → ∞, in which the

number of rows (rank of the gauge group) is not fixed.
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Let us assume we can decouple this sector in the full theory and consider the corre-

sponding partition function. Due to the SO(3) invariance we may do the reduction on

the sphere and remain with a 0 + 1 one complex matrix model in the bi-fundamental of

u(N) × u(N). As previously discussed, we can use the U(N) × U(N) gauge symmetry to

diagonalize Z and work with its eigenvalues zi (2.6) as degrees of freedom. The remaining

U(1)N gauge symmetry can be used to remove the phases of zi and make them all positive

real values, which will be denoted by ri. To fix the gauge in which Z is diagonal, however,

we need to include the Jacobian of these gauge transformations into the measure of the

path integral. Being in the bi-fundamental the procedure is a bit different from the one

discussed for adjoint scalars in 4d SYM. This has been carried out in the context of complex

matrix models in [20, 21] and here we sketch the argument.

To compute the measure factor, we recall the form of the gauge transformations on Z,

Z → UZV −1. Under the infinitesimal gauge transformations

U ≃ 1 + i(λ+ ρ), V −1 ≃ 1 − i(λ− ρ), (3.1)

where λ and ρ are N ×N hermitian matrices, elements of u(N) algebra, we have

δZ = i[λ,Z] + i{ρ, Z} . (3.2)

Next let us assume that Z’s are diagonal:

Z = diag(z1, z2, · · · , zN ) (3.3)

and choose the T k basis for the N × N gauge transformations, where the elements of T k

N ×N matrices are

(T k)ij = δi,j+k, i+N ≡ i . (3.4)

We then have
[

T k, Z
]

= (zi − zi+k)δi,j+k,
{

T k, Z
}

= (zi + zi+k)δi,j+k . (3.5)

As mentioned earlier, after diagonalization of Z we are still left with the residual u(1)N

gauge symmetry and one may use that to bring zi to positive real valued ri, ri = |zi|
2.9

The Jacobian of these gauge transformations equals

J ≡

∣

∣

∣

∣

δZ

δλ
·
δZ

δρ

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

N
∏

k=1

k
∏

i=1

(zi − zi+k) · (zi + zi+k)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∏

i>j

(

z2
i − z2

j

)

∣

∣

∣

∣

∣

2

, (3.6)

The measure of the path integral in the half-BPS sector involves DZDZ̄ after fixing the

gauge and in the basis where Z is diagonal it becomes
∏

i dzidz̄i|
∏

i>j(z
2
i −z

2
j )|2. The resid-

ual u(1)N symmetry should now be implemented. This will not change the Jacobian (3.6)

9To be more precise, in the presence of the Chern-Simons terms we are still left with the over-all u(1),

the u(1)b which rephases all zi simultaneously and hence all the zi have the same phase.
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and its effect is to render zi real positive and reducing dzidz̄i piece to ridri. In summary,

the gauge fixed measure is
∏

i ridri
∏

i>j(r
2
i − r2j )

2 [20].

In analogy with the half-BPS sector of an N = 4 U(N) SYM theory (e.g. see [10,

22, 23]), one can then rewrite the partition function of the ABJM theory in the half-BPS

sector as

Z|half−BPS = e−F =

∫

[

DA1DA2DZDZ̄
]

half−BPS
e−S1/2 BPS = 〈Ψ|Ψ〉 (3.7)

where S1/2 BPS is (2.1) but reduced on S2 and |Ψ〉 is the wavefunction for the vacuum

state of a system of N 2d fermions in a harmonic oscillator potential. In the above by
[

DA1DA2DZDZ̄
]

half−BPS
≡ DM we mean the part of the measure which is allowed by

the half-BPS condition. In other words, we are assuming that the half-BPS sector is a closed

sector of the theory and is protected, even quantum mechanically, by supersymmetry. In

particular, in DM we do not allow for Z and A configurations which have non-vanishing

DθZ, DφZ, F
(i)
θt or F

(i)
φt . Moreover, DM has a δ(2F

(i)
θφ / sin θ−J

(i)
0 ) factor. Therefore, what

we are computing is effectively the partition function of a 0 + 1 dimensional one complex

matrix model which is exactly equal to the partition function ofN 2d fermions in a harmonic

oscillator potential. The residual u(1)N symmetry, however, amounts to setting the angular

momentum of each of these oscillators on the 2d plane equal to zero [20]. Explicitly, each

of these fermions should satisfy the Schrodinger equation

−
1

ri
∂ri(ri∂riΨi) + r2i Ψi = 2(2ni + 1)Ψi (3.8)

The frequency of this system, as is seen from (2.10), is k/4. Note that working in the zero

angular momentum sector, the energy (once the zero point energy 2 is subtracted) is an

even multiple of the frequency and hence on the right-hand-side of (3.8) we have 4 times

an integer. The state |Ψ〉 is then obtained from the Slater determinant of Ψi’s, which is

leading to the measure factor times a Gaussian with width one. In this picture the factor

ridri is naturally related to the fact that we are working with 2d fermions.

It is worth noting that despite the similarities there are important differences with the

N = 4 SYM case:

• In the N = 4 case, the half-BPS sector can be described through a system of 2d

fermions in the presence of a constant magnetic field in the Lowest Landau Level.10

In our case, degrees of freedom can be interpreted as 2d fermions in an harmonic

potential in states of vanishing angular momentum. Thus, there is no relation to the

quantum Hall system nor the Laughlin wave function. On the other hand, the zero

2d angular momentum condition can be related to a one dimensional “half harmonic

oscillator potential” (restricted to move in the x > 0 region). However, the latter

will not produce the extra ri factor in the measure.

• In the ABJM theory, there is a non-trivial flux over the S2 coming from the insertion

of the ’t Hooft loop operators (2.15). This should be contrasted with the N = 4 on

10This was related to the fact that in the SYM side half-BPS states are holomorphic functions of one of

the three scalars complex scalars of the theory [10].
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R×S3 (cf. footnote 4). This is implemented by performing the path integral around

the configuration with these background fluxes (given in (2.8)). This also leads to

the appearance of k/4 as the frequency of the 2d harmonic oscillator.

4 Half-BPS states in dual descriptions

The ABJM theory (at level k = 1) is dual to M-theory on AdS4×S
7. We have two different

available descriptions for the latter: the 11d supergravity in asymptotically AdS4 × S7

backgrounds and the plane-wave matrix model [7]. In the following, we will match the

half-BPS operators constructed in previous sections with the description of these states in

these other two formulations of the same system. This will provide a check of our operator

construction in the N → ∞ limit.

4.1 Plane-wave matrix theory perspective

The following discussion is strongly based on the results obtained in [12, 15, 24, 25].

We review them here for completeness to establish a precise relation with the half-BPS

operators defined before.

The plane-wave matrix model [7] is a 0+1 dimensional U(J) supersymmetric quantum

mechanics involving nine scalars XA and their fermionic counterparts, all in the J × J

hermitian representation of the U(J) gauge group. The set of scalars is divided into two

groups Xa, a = 1, 2, · · · , 6 and Xi, i = 1, 2, 3. Physical states lie in representations of

SU(2|4) comprised of finite collections of representations of the bosonic subalgebra SO(6)×

SO(3) × U(1)H .

It is known that this matrix model has a discrete set of classical half-BPS vacua which

are interpreted as fuzzy M2-brane spheres. The half-BPS condition implies Xa = 0 and

the kinetic terms to vanish and we hence remain with

H =
R−

8
Tr

(

iǫijk[Xi,Xj ] +
µ

2R−
Xk

)2

(4.1)

(R− is the arbitrary energy scale of the theory and µ/R− is the only dimensionless param-

eter of this theory. These would be irrelevant to our discussion of half-BPS states.) Zero

energy configurations are hence solutions to

[Ji, Jj ] = iǫijkJk (4.2)

whereXi = µ
2R−

Ji. Thus, all classical vacua are labeled by J dimensional reducible represen-

tations of SU(2). The latter are determined by a set of m irreducible representations of size

Ni appearing ni times in the decomposition of the initial reducible representation so that

J =

m
∑

i=1

niNi . (4.3)

Clearly, the set of all classical vacua is equivalent to the problem of partition of an

integer J into non-negative integers [25], or equivalently to the set of Young tableaux with

J boxes. This is exactly the same set characterizing our proposed half-BPS operators in
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n2

nm

nk

N1 − N2

N1

Nm

M1 M2

n1 = Mm

Figure 1. A given Young tableau can have interpretation in terms of a collection of ni spherical

M2-branes of radius Ni, i = 1, 2, · · · ,m or alternatively in terms of mk spherical M5-branes the

radius of which is given by Mk, k = 1, 2, · · · ,m. As is seen from (4.4), m1 = Nm, m2 = Nm+1 −

Nm, · · · ,mm = N1 −N2.

the ABJM theories. Since it is known that these states are exact quantum mechanical

vacua, and the size of the representation corresponds to the units of light-cone momentum

carried by the state in its DLCQ interpretation, we can conclude our matching goes beyond

the classical identification.

The microscopic interpretation in terms of (quantized) spherical M2-branes and M5-

branes is similar to the one encountered in the half-BPS sector of N = 4 SYM. Spherical

M2-branes correspond to dual giant gravitons whose size is proportional to the size of the

irreducible representation Ni; ni stands for the number of dual giants having the same size.

In terms of the Young tableau description, we can always order the sizes of the irreducible

representations so that Ni > Nj for i < j. In this way, a given Young tableau has ni rows of

length Ni, with the total number of rows
∑

i ni being the total number of M2-brane giants.

As argued in [25], the same Young tableau and set of labels can have an interpretation

in terms of (quantized) spherical M5-brane giants, as a collection of m M5-branes the

fourth power of the radius of which is proportional to the amount of the DLCQ light-cone

momentum they carry, Mk, and there are mk five branes of a given size.11 The M2-brane

11Note that both size and number of giants are “classical” notions and are not good quantum numbers

in an interacting theory. Even though the M2 or M5 -giant interpretation is not appropriate one in finite

J , finite Ni or finite Mi, where the M2 or M5 brane theory becomes strongly coupled, labeling vacua by

these quantum numbers is still meaningful in such cases.

– 13 –



J
H
E
P
0
8
(
2
0
0
9
)
0
7
3

and M5-brane parameters, as depicted in figure 1, are related as:

Mk =

m−k+1
∑

i=1

ni, mk = Nm−k+1 −Nm−k+2, k = 1, 2, · · · ,m, Nm+1 = 0. (4.4)

One can easily check that
∑m

i=1miMi =
∑m

i=1 niNi = J . The M5-brane description

becomes a good one (weakly coupled) when the Mi are large, while the M2 description is

a good one when Ni are large.

Modulo the caveats associated with interpreting these states geometrically as bound

states of spherical M2 and M5-brane giants, we can definitely establish a one-to-one corre-

spondence between any set of fluxes {ni} determining our half-BPS operators with the set

of dimensions of the irreducible representations characterizing the plane-wave Matrix model

vacua. Moreover, the ABJM theory (at k = 1) is invariant under the Osp(4∗|8) superalge-

bra. The latter has several half-BPS subsuperalgebras [16]. The one relevant after taking

the Penrose limit is SU(2|4). That is precisely the one corresponding to the SU(2) invariant

half-BPS states of the ABJM theory. This closes the argument regarding the comparison

between the ABJM SU(2) half-BPS spectrum studied in section 2 and the plane-wave ma-

trix model. Note, however, that in the ABJM theory the corresponding Young tableau has

a maximum number of rows N . In the case of the plane-wave matrix model, as we are

dealing with M-theory on the Penrose limit of AdS4 × S7, N has been sent to infinity.

Before ending this section, we would also like to comment on the SU(2)-invariant half-

BPS sector of the ABJM theory with k 6= 1. Recalling the process of taking the Penrose

limit and that for generic k the ABJM theory is dual to M-theory on AdS4 × S7/Zk,

this half-BPS sector corresponds to making the shift R− → R−/k. Equivalently, we can

replace the size of the matrices by kJ , while only restricting them to fall into reducible SU(2)

representations with block sizes being multiples of k, i.e. for Ni being integer multiples of k.

4.2 11d supergravity perspective

The following discussion is based on [2, 13, 15]. We include it here for completeness and

to make the emergence of Young tableau from the classical moduli space of supergravity

configurations and its relation to the Young tableau appearing in our operator construc-

tion more explicit. A similar connection, using the plane-wave matrix model vacua and

supergravity has been discussed in [13, 15].

The classical moduli space of half-BPS configurations preserving SO(6) × SO(3) ×

U(1) in 11d supergravity was worked out in [2] and we very briefly review them here.

These symmetries reduce the functional dependence of all metric and flux components to a

three dimensional dependence described by a set of coordinates {y, x1, x2}. Any solution

belonging to this moduli space is determined by an scalar function D(y, x1, x2) satisfying

the Toda equation

(∂2
1 + ∂2

2)D + ∂2
ye

D = 0 . (4.5)

It was also pointed out that for any translationally or rotationally invariant configu-

ration, the Toda equation could be mapped through a non-linear change of variables to

a linear 3d Laplace equation. For our purposes of establishing a dictionary between our
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η

ρ

ηn

η1

η2

Q1

Q2

Qn

Figure 2. A generic half-BPS deformation of the 11d plane-wave is specified with a distribution of

conducting disks with charge Qi located at ηi on the η − ρ plane.

proposed half-BPS operators to supergravity configurations, it will be enough to restrict

ourselves to translationally invariant solutions. These were extensively studied in [13–15].

In such situation, the Toda equation reduces to

∂2
2D + ∂2

ye
D = 0 . (4.6)

Using the implicit change of coordinates and variables

eD = ρ2 , y = ρ∂ρV (ρ, η) , x2 = ∂ηV (y, η) , (4.7)

the Toda equation is mapped to the axisymmetric 3d Laplace equation

1

ρ
∂ρ (ρ∂ρV ) + ∂2

ηV = 0 . (4.8)

This is a problem in electrostatics with potential V which can be fully determined once

we impose a set of boundary conditions that makes these half-BPS configurations regular.

It was shown in [13] that this mathematical problem is fixed by specifying the locations ηi

and the charges Qi carried by a discrete set of conducting disks (their sizes are related to

the charges they carry).

All these solutions will be deformations of the maximally supersymmetric 11d plane-

wave background, so let us consider this solution first. The electrostatic potential is

Vb = ρ2η −
2

3
η3 . (4.9)

This fixes the transformation between coordinates to be

y = 2ρ2η, x2 = ρ2 − 2η2 , (4.10)
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whereas the 11d metric is

ds2 = −4(4η2 + ρ2)dt2 − 4dx1dt+ 4(dρ2 + dη2) + 4ρ2dΩ2
5 + 4η2dΩ2

2 . (4.11)

Notice that both η and ρ are coordinates related to the radii of S2 and S5. This point will

be important in our analysis below.

Any excitation on top of this vacuum will be given by a distribution of conducting

disks located at constant η > 0 (see figure 2).12 The disks locations are given by positive ηi

and their sizes/charges by ρi (cf. figure 2). The number of M2-branes (N2) and M5-branes

(N5) can be computed in the supergravity approximation as flux integrals [13]:

N2 =
8Qi

π2
, (4.12)

N5 =
2di

π
, (4.13)

where Qi is the charge of the ith disk and di = ηi+1 − ηi. We comment that in the

above picture we have considered M2-branes and M5-branes as perturbations above the

background plane-wave and hence it is meaningful to specify the size and number of branes.

With the above information we can readily map figure 2 into the Young diagram

corresponding to the plane-wave matric theory vacua. This has been depicted in figure 3

(a similar picture has been discussed in [14]). Note that we have chosen the vertical axis

such that it directly measures Qi rather than the ρ.

5 Discussion

We have studied and classified all the SO(3) invariant states in the half-BPS sector of the

u(N) × u(N) ABJM theory on R× S2. First, we determined the classical moduli space of

such configurations and showed that in the sector with R-charge J it coincides with the

solutions to the problem of partition of J into N non-negative integers. These integers

correspond to the integral fluxes of the gauge fields on the S2 where the theory is defined.

Therefore, these states are in one-to-one correspondence with Young tableaux of J boxes

and maximum number of rows N . Second, we constructed explicit gauge invariant BPS

operators involving non-Abelian ’t Hooft monopole operators.

We showed, through path integral considerations, that partition function of the ABJM

theory in this sector is exactly matching the partition function of N 2d fermions in a

harmonic oscillator potential the frequency of which is k/4 and where the fermions are

restricted to move in the zero angular momentum sector. This should be contrasted with the

fermionic picture corresponding to the half-BPS sector of N = 4 SYM theory. It would be

desirable to match our partition function arguments to the computations of supersymmetric

indices [27] and semi-short operator counting [28] carried for the ABJM theory.

We argued that there is a precise correspondence between the half-BPS sectors of

ABJM theory, plane-wave matrix theory and the 11d LLM bubbling geometries and all of

12Note that the (ρ, η) plane is actually a half-plane, since ρ ≥ 0 and the background potential Vb fills the

η ≤ 0 region.
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η
η1η2ηn

Q1

Q2

Qk

Qn

Q = ρ̃

Figure 3. The connection between LLM η − ρ plane and the Young diagram. The length of

the rows are determining the size of M2-branes and the number of row of the same size, Qi, is

determining the number of M2-branes of a given size. Alternatively one can focus on the columns.

The length of columns determine the size of M5-branes while the number of columns of given length,

ηi+1 − ηi, determines the number of M5-branes with that size. The total number of boxes in the

Young diagram is hence
∑

n

i=1
ηiQi which is equal to the total R-charge of the system (above the

background value).

which can be nicely encoded in terms of Young diagrams, e.g. see figure 3. This precise

matching was, however, done for N → ∞ case. This was due to the computational difficul-

ties of constructing the 11d LLM bubbling geometries which are deformations of AdS4×S
7

(or AdS7 × S4), rather than the 11d plane-wave. One may use our results coming from

ABJM theory as an additional guide to construct such solutions. In particular, our analysis

of the measure and the 2d fermion picture (for k = 1 case) suggests that a similar fermionic

picture, as we have in the 10d LLM geometries [2], should also be present in the 11d case.

As another related interesting question, for the half-BPS sector in type IIB on AdS5 ×

S5, it was established that the singular half-BPS superstar supergravity configuration

emerges as a coarse-grained description of the typical state in the Hilbert space describ-

ing N free fermions in the matrix model [29]. In M-theory, there is a similar singular

half-BPS configuration, and it would be interesting to work out the dictionary between

the gravity data describing the classical moduli space and the classical limit of the typical
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quantum states belonging to this sector. The analysis of such “typical states” in the gauge

theory side using the plane-wave matrix model was studied in [15]. If the wave functions

for these states do not get renormalized, it should be possible to establish a connection

between gauge theory and gravity. If there is renormalization, such connection may not be

so apparent as for the N = 4 story described in [29].

As argued the matrix theory and supergravity descriptions can be interpreted in terms

of M2-branes or M5-branes. In the ABJM theory, being a 2 + 1 dimensional field theory,

the more natural interpretation is in terms of M2-branes. It is interesting to elaborate

further on the M5-brane picture in the ABJM theory. One specific computation in this

direction could be studying the spectrum of fluctuations of the theory around its half-BPS

vacua. A similar analysis within the plane-wave matrix theory revealed [25] that among

these fluctuations those which are protected by supersymmetry may be identified with the

fluctuations of spherical M5-branes.

As argued in [16, 28] the Osp(4∗|8) has other half-BPS superalgebras than SU(2|4). It

would be interesting to study the moduli space of half-BPS states which are invariant un-

der these other half-BPS superalgebras. As a direct continuation of our half-BPS analysis

one may also study and classify less BPS states. This problem has been considered e.g.

in [18] and [27].
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